/* Written by Adrian Freed, The Center for New Music and Audio Technologies, University of California, Berkeley. Copyright (c) 2013, The Regents of the University of California (Regents). Permission to use, copy, modify, distribute, and distribute modified versions of this software and its documentation without fee and without a signed licensing agreement, is hereby granted, provided that the above copyright notice, this paragraph and the following two paragraphs appear in all copies, modifications, and distributions. IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. For bug reports and feature requests please email me at yotam@cnmat.berkeley.edu */ #include "OSCTiming.h" #if defined(TEENSYDUINO) && defined(__arm__) extern volatile uint32_t systick_millis_count; static uint32_t savedcount, savedcurrent; static void latchOscTime() { uint32_t istatus; uint32_t count, current; __disable_irq(); current = SYST_CVR; count = systick_millis_count; istatus = SCB_ICSR; // bit 26 indicates if systick exception pending __enable_irq(); //systick_current = current; //systick_count = count; //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0; if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++; current = ((F_CPU / 1000) - 1) - current; savedcount=count; savedcurrent=current; } static osctime_t computeOscTime() { //4,294,967,296 osctime_t t; t.seconds = (( uint64_t)(savedcount/1000)) ; t.fractionofseconds = ( (uint64_t)(4294967295) * ( (savedcount * 1000 + (uint64_t)savedcurrent / (F_CPU / 1000000UL)) % 1000000) ) /1000000; return t; } osctime_t oscTime() { latchOscTime(); return computeOscTime(); } #elif defined(CORE_TEENSY) extern volatile uint32_t timer0_millis_count; static uint32_t savedcount, savedmicros; static void latchOscTime() { noInterrupts(); savedcount = timer0_millis_count; savedmicros = micros(); interrupts(); } static osctime_t computeOscTime() { //4,294,967,296 osctime_t t; savedmicros %= 1000000; t.fractionofseconds= (67108864ULL * savedmicros) / 15625 ; // 2^32/1000000 t.seconds = savedcount/1000; return t; #ifdef ddfgsdfgsdfgsdfg return ((savedcount/1000)<<32) + ( (4294967295ULL) * ( (savedcount * 1000ULL + savedmicros) % 1000000ULL) ) /1000000ULL ; #endif } osctime_t oscTime() { latchOscTime(); return computeOscTime(); } #elif defined(AVR) || defined(__AVR_ATmega32U4__) || defined(__SAM3X8E__) || defined(_SAMD21_) || defined(__ARM__) static uint32_t savedcount, savedmicros; static void latchOscTime() { noInterrupts(); //cli(); savedcount = millis(); savedmicros = micros(); interrupts(); //sei(); } osctime_t computeOscTime() { //4,294,967,296 osctime_t t; savedmicros %= 1000000UL; // t.fractionofseconds = (67108864ULL * (uint64_t)savedmicros) / 15625ULL ; // 2^32/1000000 t.fractionofseconds= (67108864UL * savedmicros)/ 15625ULL ; // 2^32/1000000 t.seconds = savedcount/1000; return t; } osctime_t oscTime() { latchOscTime(); return computeOscTime(); } #else static void latchOscTime() { } osctime_t oscTime() { osctime_t t; t.fractionofseconds = 1; return t; } #endif int adcRead(int pin, osctime_t *t) { latchOscTime(); int v =analogRead(pin); *t = oscTime(); return v; } #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__) || defined(__MK66FX1M0__) int capacitanceRead(int pin, osctime_t *t) { latchOscTime(); int v = touchRead(pin); *t = oscTime(); return v; } #endif int inputRead(int pin, osctime_t *t) { int v =digitalRead(pin); *t = oscTime(); return v; }