/* Written by Adrian Freed, The Center for New Music and Audio Technologies, University of California, Berkeley. Copyright (c) 2013, The Regents of the University of California (Regents). Permission to use, copy, modify, distribute, and distribute modified versions of this software and its documentation without fee and without a signed licensing agreement, is hereby granted, provided that the above copyright notice, this paragraph and the following two paragraphs appear in all copies, modifications, and distributions. IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. For bug reports and feature requests please email me at yotam@cnmat.berkeley.edu */ #include #include "OSCBoards.h" #ifndef analogInputToDigitalPin int analogInputToDigitalPin(int i) { switch(i) { #ifdef A0 case 0: return A0; #endif #ifdef A1 case 1: return A1; #endif #ifdef A2 case 2: return A2; #endif #ifdef A3 case 3: return A3; #endif #ifdef A4 case 4: return A4; #endif #ifdef A5 case 5: return A5; #endif #ifdef A6 case 6: return A6; #endif #ifdef A7 case 7: return A7; #endif #ifdef A8 case 8: return A8; #endif #ifdef A9 case 9: return A9; #endif #ifdef A10 case 10: return A10; #endif #ifdef A11 case 11: return A11; #endif #ifdef A12 case 12: return A12; #endif #ifdef A13 case 13: return A13; #endif #ifdef A14 case 14: return A14; #endif #ifdef A15 case 15: return A15; #endif #ifdef A16 case 16: return A16; #endif } return -1; } #endif #ifdef BOARD_HAS_DIE_POWER_SUPPLY_MEASUREMENT #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__) || defined(__MK64FX512V__) || defined(__MK66FX1M0__) float getSupplyVoltage() { analogReference(DEFAULT); analogReadResolution(12); analogReadAveraging(32); PMC_REGSC |= PMC_REGSC_BGBE; // 39=bandgap ref (PMC_REGSC |= PMC_REGSC_BGBE); delay(1); #if defined(__MKL26Z64__) // Teensy 3 LC int val = analogRead(39); return val>0? (1.0f*4095/val):0.0f; #elif defined(__MK64FX512V__) || defined(__MK66FX1M0__) int val = analogRead(71); return val>0? (1.195f*4095/val):0.0f; #else int val = analogRead(39); return val>0? (1.195f*4095/val):0.0f; #endif } #else // power supply measurement on some Arduinos float getSupplyVoltage(){ // powersupply int result; // Read 1.1V reference against AVcc #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) ADMUX = _BV(MUX5) | _BV(MUX0); #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) ADMUX = _BV(MUX3) | _BV(MUX2); #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) || defined(__AVR_ATmega1280__) ADMUX = 0x40| _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1) ; ADCSRB = 0; #else ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #endif delayMicroseconds(300); // wait for Vref to settle ADCSRA |= _BV(ADSC); // Convert while (bit_is_set(ADCSRA,ADSC)); result = ADCL; result |= ADCH<<8; float supplyvoltage = 1.1264f *1023 / result; return supplyvoltage; } #endif #endif #ifdef BOARD_HAS_DIE_TEMPERATURE_SENSOR #if defined(__MK20DX128__) || defined(__MK20DX256__)|| defined(__MKL26Z64__) || defined(__MK66FX1M0__) || defined(__MK64FX512V__) float getTemperature() { #if defined(__MK64FX512V__) || defined(__MK66FX1M0__) const int temppin = 70 ; #else const int temppin = 38; #endif // untested on all teensy 3.x analogReference(INTERNAL); analogReadResolution(12); analogReadAveraging(32); delay(2); float val = 25.0 + 0.17083 * (2454.19 - analogRead(temppin)); analogReference(DEFAULT); return val; } #else // temperature float getTemperature(){ int result; #if defined(__AVR_ATmega32U4__) ADMUX = _BV(REFS1) | _BV(REFS0) | _BV(MUX2) | _BV(MUX1) | _BV(MUX0); ADCSRB = _BV(MUX5); #else ADMUX = _BV(REFS1) | _BV(REFS0) | _BV(MUX3); #endif delayMicroseconds(200); // wait for Vref to settle ADCSRA |= _BV(ADSC); // Convert while (bit_is_set(ADCSRA,ADSC)); result = ADCL; result |= ADCH<<8; analogReference(DEFAULT); return result/1023.0f; } #endif #endif